Network Devices

Networking Basics
Marty Rubenstein
Presales Application Engineer
mrubenstein@automatech.com
Network Devices

- You will eventually be handed a network diagram from a customer at some point and it will be filled with symbols. We will cover the more common ones and explain in detail.
- Hubs
- Switches
- Routers
Domain Concepts

• Collision domain
 – All bandwidth is shared in a collision domain
 – Only one client can ‘talk’ at a time.
 – Collision can occur when two try to talk simultaneously resulting in retransmission and wasted bandwidth
 – Each client forces all other clients to pay attention to it

• Broadcast domain
 – What it is: A group of devices on a network segment that hear all broadcasts sent on that network segment
 – Devices use broadcasts when they want to share information with all other devices or are looking for a particular device to respond.
Hubs

• Symbol
• Hubs create a single collision domain
• Hubs don’t have anything to do with the Data Link layer of the OSI model, nor do they perform any switching at all. Hubs are strictly Physical layer devices. (OSI Layer 1)
• Hubs electrically repeat signals on each interface.
Hub Example

If PC A and PC B both transmit at the same time, a collision occurs. CSMA/CD is invoked and all must back off for a random period.
Switches

• Symbol for a switch
• Purpose: Create multiple collision domains. One for each port.
• Increases available bandwidth
• Decisions: flood, forward, filter
• Can be used to break up broadcast domains
 – Virtual LANs (VLANs)
• Switches operate at layer 2 of the OSI model
 – Sometimes layer 3.
Switching and Domains

• One broadcast domain by default
 – This can be changed through the use of VLANs
 – Most managed switches use a single VLAN.

• Multiple collision domains however
 – Each port is its own collision domain
Switching Decisions

- A switch will do one of three things with an incoming frame.
 - Forward it
 - Filter it
 - Flood it
- These decisions are made based on the contents of the mac address table in the switch
Flooding

- Flooding is done when a switch does not have an entry for the destination in its mac address table.
- When a frame is flooded it is sent out every port on the switch except the one it came in on.
Forwarding

• Forwarding is done when a switch already HAS an entry for the destination in its mac address table

• When a frame is forwarded, it is sent out only on the port that has the mac associated with it
Filtering

- A switch port will filter a frame if it finds a match for both the source and destination MAC addresses AND they are on the same port.

<table>
<thead>
<tr>
<th>Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:11:11:11:11:11</td>
<td>P1</td>
</tr>
<tr>
<td>33:33:33:33:33:33</td>
<td>P1</td>
</tr>
</tbody>
</table>

Source port and destination port are the same
So I will filter the frame.
Switching Example 1

1) Device 1 wants to send data to Device 3

2) The Mac address table is empty!

3) The switch puts an entry in the table with the source address of the frame and the port it came in on and floods the frame out all ports.
1) Device 3 hears the flooded frame and matches its MAC address. It responds to the frame.

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:11:11:11:11:11</td>
<td>P1</td>
</tr>
<tr>
<td>33:33:33:33:33:33</td>
<td>P3</td>
</tr>
</tbody>
</table>

2) The switch fills in the source address of the frame and port it came in on.

3) The switch matches the destination address with that of entry one in its MAC table and forwards the frame out only Port 1.
Address Resolution Protocol

• Typically the process of learning the mac addresses happens during the ARP process
• Arp is Address Resolution Protocol (layer3)
• It is used to find the layer 2 hardware address from a layer 3 IP address.
• It asks the question: Who has IP address x.x.x.x, please tell y.y.y.
• A host will ask this question to populate its local ARP cache. In this way it will be able to populate the Layer 2 frame with the proper hardware addresses for the LAN.
Types of Switches

• Unmanaged
 – No management interface
 – No setup or configuration
 – Example EDS-205A

• Managed
 – Management interface
 – Rich feature set
 – Configuration required
 – Example EDR-510A

• Managed Layer 3
 – All the features of a managed L2 switch
 – Unlike Layer-2 switching, which uses the MAC address for exchanging data, a Layer-3 switch uses the IP address to represent the destination of a data packet.
Example Managed Switches

Supported Modules

<table>
<thead>
<tr>
<th>Module Type</th>
<th>EDL-510A</th>
<th>EDS-110A</th>
<th>EDL-515A</th>
<th>EDN-508A</th>
<th>EDN-505A</th>
<th>EDN-415A</th>
<th>EDN-405A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet Modules</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fast Ethernet Modules</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SFP/GigE Ethernet Modules</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SFP Fast Ethernet Modules</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Number of Ports

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Number of Ports</th>
<th>Model</th>
<th>LAN1 10/100/1000 Mbps</th>
<th>Ethernet 1Gbps</th>
<th>10Gbps</th>
<th>Autonomous Backup Configuration (APC-01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet</td>
<td>16</td>
<td>10/100/1000 Mbps</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>2</td>
<td>10/100 Mbps</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Redundancy and Fault Tolerance

- Turbo Ring (Recovery Time < 20 ms)
- Turbo Ring (Recovery Time < 200 ms)
- RPR/IP-TP

Network Management and Control

- Layer 3 Switching
- Port Trunking
- VLAN/802.1Q
- QoS
- Spanning Tree (STP)
- IEEE 802.1x
- Auto-Discovery (DDNS)
- ARP/ICMP/HTTP/FTP
- ISL/802.1Q VLAN
- Port Security
- IEEE 802.1X
- Port Lock
- IPv6
- 802.1ad/Multicast

Additional Features, and configurations for a more intelligent network.
Example Unmanaged Switches

DIN-Rail Ethernet Switches

<table>
<thead>
<tr>
<th>Unmanaged DIN-Rail Switches</th>
<th>EDI-2016</th>
<th>EDI-2206</th>
<th>EDI-316</th>
<th>EDI-300</th>
<th>EDI-308</th>
<th>EDI-205</th>
<th>EDI-209A</th>
<th>EDI-209A</th>
<th>EDI-208</th>
<th>EDI-206</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superior Modules</td>
<td>✓</td>
</tr>
<tr>
<td>STAR Gigabit Ethernet Modules</td>
<td>✓</td>
</tr>
<tr>
<td>STP Fast Ethernet Modules</td>
<td>✓</td>
</tr>
<tr>
<td>Number of Ports</td>
<td>Max. Number of Ports</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Regeneration</td>
<td>Maximum, 10/1000 Mbps</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Fast Ethernet, 10/1000 Mbps</td>
<td>–</td>
<td>–</td>
<td>15</td>
<td>–</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Available Power Supply</td>
<td>24 VDC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>24 VAC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>12/24VDC/48VDC</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
</tbody>
</table>

Basic functionality, Low Cost
If each sends 100 broadcast packets
Each device will receive 99,900 packets

Network becomes very busy!

If there are 1000 devices
Divide Broadcast Domain

Broadcast Domain A

Broadcast Domain B

Broadcast Domain C

Router/Layer 3 Switch
Routers

• Symbol
• Purpose is to forward packets between networks
 – Forward traffic by IP Address instead of MAC Address
 – Connects Subnets at the IP Layer
• Routers break up broadcast domains
• Routers are located at gateways, the places where two or more networks connect.
• Provide security with firewall rules
• Network Address Translation
LANs and Routers

- Routers breakup broadcast domains
- Routers are layer 3 devices (IP)

- All broadcast frames will remain local to the broadcast domain
- All layer 2 MAC addressing is isolated to the broadcast domain
- Benefit is in greater security and better utilization of bandwidth
Thank you! Please contact AutomaTech or visit www2.automatech.com/solution-briefs for additional information on future Solution Briefs and technology.